Jupyter Snippet CB2nd 04_ctypes
Jupyter Snippet CB2nd 04_ctypes
5.4. Wrapping a C library in Python with ctypes
%%writefile mandelbrot.c
#include "stdio.h"
#include "stdlib.h"
void mandelbrot(int size, int iterations, int *col)
{
// Variable declarations.
int i, j, n, index;
double cx, cy;
double z0, z1, z0_tmp, z0_2, z1_2;
// Loop within the grid.
for (i = 0; i < size; i++)
{
cy = -1.5 + (double)i / size * 3;
for (j = 0; j < size; j++)
{
// We initialize the loop of the system.
cx = -2.0 + (double)j / size * 3;
index = i * size + j;
// Let's run the system.
z0 = 0.0;
z1 = 0.0;
for (n = 0; n < iterations; n++)
{
z0_2 = z0 * z0;
z1_2 = z1 * z1;
if (z0_2 + z1_2 <= 100)
{
// Update the system.
z0_tmp = z0_2 - z1_2 + cx;
z1 = 2 * z0 * z1 + cy;
z0 = z0_tmp;
col[index] = n;
}
else
{
break;
}
}
}
}
}
!!gcc -shared -Wl,-soname,mandelbrot \
-o mandelbrot.so \
-fPIC mandelbrot.c
import ctypes
lib = ctypes.CDLL('mandelbrot.so')
mandelbrot = lib.mandelbrot
from numpy.ctypeslib import ndpointer
# Define the types of the output and arguments of
# this function.
mandelbrot.restype = None
mandelbrot.argtypes = [ctypes.c_int,
ctypes.c_int,
ndpointer(ctypes.c_int),
]
import numpy as np
# We initialize an empty array.
size = 400
iterations = 100
col = np.empty((size, size), dtype=np.int32)
# We execute the C function, which will update
# the array.
mandelbrot(size, iterations, col)
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
ax.imshow(np.log(col), cmap=plt.cm.hot)
ax.set_axis_off()
%timeit mandelbrot(size, iterations, col)
28.9 ms ± 73.1 µs per loop (mean ± std. dev. of 7 runs,
10 loops each)